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FOREWORD

o -

L - > These
NEBULA [NEB] and Ada [ADA) are rapidly approaching Uuse. Jhey have
been designed to achieve similar goals, to improve the quality,
timeliness, and cost of the real-time systems vsed in the Department
of Defense.

NEBULA is intended to provide a common architecture for these systems
in applications that range from microprocessors to mainframes. Ada
is designed, among other things, to ease concurrent programming

This rveport
reviews the concurrency features of Ada,

examines the aspects of the NEBULA architecture that are more
significant for the implementation of concurrent programs,

suggests a method for reducing the tasking mechanisms of Ada to a
few simple kernel operations, and

evaluates the NEBULA architecture in terms of this method and
these operations

It is found that NEDBULA supports admirably the control structures of
Ada, but its Memory Mamagement system is not very suitable. Entry
calls and Accept statements are found to rtequire about 40 machine
instructions each. A simple rendez-vous requires the execution of
over 100 instructions.
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1.0 INTRODUCTION

| In this report we examine the problem of implementing the concurrent
aspects of Ada* in terms of more simple mechanisms and of implementing
these mechanisms in terms of the NEBULA Instruction Set Architecture.
OQur aim is to determine the suitability of Ada for implementing the
real-time systems that will execute on NEBULA machines.

The NEBULA Architecture has been introduced to provide an advanced
common Instruction Set Architecture for real-—-time systems used by the
Department of Defense(DOD). This common architecture is assumed to be
shared by machines with widely divergent performance characteristics,
from Microcomputers:, to Minicomputers, to Mainframes. It is intended
to permit obgyject-level shareability of code among all members of this
computer family

NEBULA is an efficient [DS], modern ‘computer’ that has features and
instructions expecially designed to support concurrent programming

Tasks are well defined objects of this architecture with operations
for starting a new task and for performing a context switch. It can
communicate with I/0 Controllers by messages

The Ada Language was developed with the intent of making it the
. standard implementation 1languages for the real-time systems used by
‘. the DOD. It is a modern strongly-typed Language with features that

1. Support Modularity with Packages. Separate Compilations,
controlled name spaces.

n

. Improve Portability with the use of Pragmas: Representation
i statements, the predefined System Package, and with standard
mechanisms for interfacing to other languages and to machine code.

3. Permit the direct expression of concurrency by allowing task
definitions and permit intercommunication among tasks by using the
convenient rendez-vous mechanism.

4, handle with the Exception Handling mechanism the errors and the
abnormal contingencies that are s0 common in real-time
applications

Normally, real-time systems are written in a mixture of high-level
language, assembly language, and a heavy dose of calls to services of
the underlaying operating system. With the advent of Ada. in theory
at least, the whole program can be written in Ada in a manner that is
independent of the computer and of the operating systems being used
(and when dependencies exist, they can be carefully isolated).
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! In this report we examine the question of how well NEDULA supports the
; toncurrency features of Ada. We address this question by examining
how the rendez-vous mechanism of Ada can be expressed in terms of more
primitive operations and how well these operations can be implemented
in NEBULA. OQOur approach is essentially by example. No comparative
study to other architectures in the style of{TAN] is attempted

This report starts by examing the Tasking Mechanism of Ada
Particular consideration is given to the storage structure of
Concurrent Programs because tasks in Ada are assumed to have dirtect
access to the objects visible to them.

The features of the NEBULA Architecture that more directly impact the
implementation of a concurrency kernel are next examined. Questionsg 1
. of Memory Spaces and of Memory Management are addressed. The
; Procedure call mechanism: central to the NEBULA architecture, is
examined.

Control Blocks are specified for Ada Tasks. Simple operations are
defined for implementing the various forms of the rendez—vous
mechanism.

Some of the concurrent features of Ada are implemented in terms of
sequential Ada and of these simple operations. The techniques used
can be directly extended to cover all of concurrent Ada. This study
is independent of the particular features provided by NEDULA.

Finally it is discussed how the <concurrency kernel of Ada can be
implemented in NEBULA. The aim here 1is to achieve a good
understanding of the suitability of NEBULA for this implementation.
Where determined, the number of NEDULA instructions required to carry

out particular operations are given. Since NEBULA has very powerful
instructions that are likely to be time consuming, the figures that
are given may be misleading. Partial conclusions on the suitability

of the Ada/NEBULA combination for implementing real-time systems are
offered.
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2.0 CONCURRENCY IN ADA

The specification part of an Ada task describes the entries that the
task makes available ¢to its environment. Entries are distinguished
into Simple Entries and Entry Families.

Simple entries have forms like:

entry RESERVE (A: in TRACK_INDEX); —— TRACK_INDEX is, say, an
~— enumeration type.

Assuming that this entry appears in the task DISKCONTROLLER, another
task can call this entry in a variety of ways.

- with a simple entry call:

DISK_DRIVER. RESERVE(X); -— X is a variable local to the

-— caller of type TRACK_INDEX
This call behaves as a procedure call in the sense that when the
call 1is finally completed, control returns to the statement
following the call. But the mechanism is more complex: if
DISKSERVER 1is not ready to accept the call, the caller must wait
until DISKDRIVER becomes ready. Only then the RendezVous betuween
caller and callee takes place.

with a3 Conditional Entry Call:

select
DISK_SERVER. RESERVE(X);
~— a possibly empty sequence S of statements
else
~- a3 possibly empty sequence T of statements
end select;
Now if DISKSERVER is not immediately available to accept the
entry call, the call is not made and the sequence T is executed,
after which the conditional entry call statement is completed.
Otherwise, the entry is called and it behaves as a simple entry
call. Then the sequence S is executed. After which the
conditional entry call statement is completed

with a timed entry call:

select

DISK_SERVER. RESERVE(X)

-- a possibly empty sequence S of statements
or

delay Di

-- a possibly empty sequernce T of statements
end select;

Here, if the rendez—vous is po-sible within D seconds, the coll
is completed as a simple entry call, the sequence © is exercutrd
and the timed entry call statement is completed. Otherwisce the
sequence T is executed and the timed entry call statement is

i = ot v
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completed.

Entry families are like:

entry TRANSFER (TRACK_INDEX)(THE_OP: in OPERATION;

B: in SECTOR_INDCX;

C: in out SECTOR);
where TRACKINDEX is a discrete type, say, INTEGER range O .. 199.
Then this entry family has 200 members. When a call is made to the
family TRANSFER, a specific member must be specified. Apart from

this, calls to family entries are like calls to simple entries. For
example, if I is a variable of type TRACKINDEX, then a simple call to
. the Ith entry of TRANSFER is:

DISK_SERVER. TRANSFER(IY (X, Y, 2); —-- X,Y,Z are actual parameters
~-— of the appropriate types.

Conditional and timed entry calls to family entries are similar to the
corre~ sponding type of call to simple entries

We have seen that a task can make available entries to other taszks
1 Then these tasks «can call those entries in the manner we have

' described. Now we have to show what the original task does when 1its
entries are called.

The callee task can execute an Accept Statement, something like:

accept TRANSFER(NEXT)(THE_OP:  in OPERATIONS;
B: in SECTOR_INDEX;
C: in out SECTOR) do

LDW-LEVEL_DISK_PACK.fRANSFER(THE_DP. NEXT, B, C).
end TRANSFER;

This statement accepts a call to the member NEXT of the TRANSFER entry
family (NEXT must be an object of type TRACKINDEX). When the callee
executes this statement, it checks to see if there is a «call to the
‘NEXT’ member of the family. If there is not, it waits indefinitely
for such a call. When the call arrives (or if the caller was already
there) a rendez-vous 1is started during which the caller waits for
completion of the call. The TRANSFER operation of LOWLEVELDISKPACK is
performed. Then the rendez-vous is completed, i.e. bath the entry
call statement and the accept statement are completed and caller and
callee can continue on their merry ways

Alternatively the callee can execute a Selective Wait Statement. Here
the callee waits not just T"or a call to one of its entries, hut far
calls to any of a number of entries. The callee can Aalso choore ta
accept a call only if it comes within a specified time, or only i¢ no
delay is involved

Here is an example of a Selecitive Wait Statement:

select




E
;
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accept RESERVE(A: in TRACK_INDEX) do
-— a sequence P ¢of statements
' end RESERVE;
ﬁ or
1 when RESERVE’COUNT > O =>
accept TRANSFER(NEXT) (THE_OP: in OPERATIONS;
: B: in SECTOR_INDEX;
E C: in out SECTOR) do

—— a8 sequence Q of statements
end TRANSFER;
—— a sequence R of statements
end select;

The clause
; when RESERVE'COUNT > Q =2>

is called the Guard of the TRANSFER arm (it will be true if there is

no pending call to RESERVE). The RESERVE arm has no explicit guard,

and it is treated as if it had a guard that is always true. When the

Selective Wait statement is executed, the guards of the various arms

[ ' are evaluated. If a guard has value +true we say that the

corresponding arm is open. Then if there are calls to some of the

‘o entries of the open arms, one of these calls is accepted (which one we

don‘t know). In the example above a call to RESERVE has precedence

over calls to TRANSFER because if a RESERVE call were waiting, the

TRANSFER arm would be closed. So if there is a call to RESERVE, it is

accepted, the sequence P is executed, after which both the rendezr-vous
and the Selective Wait statement are completed.

If at the time that the Selective Wait statement is executed there is
no pen— ding call on RESERVE, then both the RESERVE and the TRANSFER
arm are open. If a call to the NEXT member of the TRANSFER family is

pending, it is accepted. The sequence Q is executed, after which the
Tendez-vous is completed. Then the R sequence is executed and the
Selective Wait statement is completed. If instead there is no pending

call to the NEXT member of the TRANSFER familu, the callee task waits
for the first call to RESERVE or to the NEXT member of TRANSFER. This
call is then accepted in the manner described above.

Variations of the Selective Wait statement take the form:

select
accept RESERVE .....

or
when RESERVE'COUNT = 0 => |

else
-— a sequence U of statements
end select;

Here if & rendez-vous cannot be reached immediately, the sequence U is
exe~ cuted and the Selective Wait statement is completed




Page 6 1

select
accept RESERVE . ..

or
when RESERVE‘/COUNT = 0 =2

or
delay D
—-- a3 sequence V of statements
end select:

Now if no rendez-vous is possible within D seconds, the V cequence 1is
executed and the Selective Wait statement is terminated.

’ Finally, there is the form: P

select
accept RESERVE . ..

or
when RESERVE'COUNT = 0 => ...

‘e or
terminate;
end select:;

The terminate alternative, if taken, terminates the execution of the
callee task. The terminate altermative can be taken when no other
alternative can be taken. The exact circumstances 1in which the
terminate alternative is taken will be described later.

Here are some additional rules and statements dealing with concurrent
tasks. N

- Tasks may have different priorities. Assuming that the Adas
) program 1is executing on a single processor, then it is not
' possible for a task of higher priority to be ready but not running
while a task of lower prio- rity is Tunning.

S T - e g

-~ If an exception arises during a rendez—vous and it is not handled
therein, it is propagated in both the caller and the callee tasks

- The Delay statement
delay D;

where D is a simple exprension of type DURATION 1[11, suspends
execution of the given task for D seconds.

~ Task types are possible as are access typres that refer to tark
types. For example:

N task type BUFFER is
entry PUT(C: in CHARACTER);




entry GET(C: out CHARACTER):
end BUFFER;

B: BUFFER; -~ a task object of type RDUFFER the
type TO_BUFFER is access BUFFER; —— type of pointers to BUFFER tasks
TB: TO_BUFFER; -— a pointer to a BUFFER tack object.

—-=- initially it is MIL.
TB . = new BUFFER; -~ a BUFFER task is created and asso—
-— ciated to TB.

[1] DURATION i1s a predefined fixed—point type. DURATIOCN constants
are written as real constants and denote seconds. Go 3. 142
means 3 seconds and 142 milliseconds.

e e S e s . " = " e e e o (2 ST o 0 o e Bt T S o o S S S o " S o o W T s M o ot (e e T B BN e e Sl i e b S T A el ke e s

2.1 THE STORAGE STRUCTURE OF ADA PROGRAMS

In Figure 2.1 appears a sequential progrem of & block structured
language. In this program each time that a procedure is invoked an
activation frame (or more simply, just a frame) is allocated on the
stack. In the frame there is information for returning to the caller
and for re—-establishing the <conditions that existed therein. The
pointer that allows the access to this kind of information is the
called the Dynamic Link. In the frame there 1is information for
accessing variables declared in procecdures enclosing (textually) the
procedure being called. The pointer that allows the access to this
kind of information is called the Static Link. In the frame there is
also space for the local variables and for the temporsry variables of
the procedure being called. For example, a simplified form of a frame
of the procedure B declared ir Figure 2.1 is:

H tdynamic linki-—-
—-——istatic link !
If the procedure D is called and it in turn colls P which calls O

then P, then C, the following calling sequence takes place

B --% P == C -=>P =3 C

and the structure of activotion frames depicted in Figqure 2.2 evolves
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The computation of the Links takes place as follows:
DYNAMIC LINK:

The dynamic link of the callee is set to the address of the frame of
the caller.

STATIC LINK:

IF the caller and the callee are siblings (i.e. declared in the
same procedure ) THEN
the static link of the callee is set to the static link of
the caller

ELSIF the callee is the son of the caller (i.e. declared
immediately within the «caller ) THEN
the static link of the callee is set to the address of the
frome of the caller

ELSIF the callee is the Ith ancestor of the caller (i . e 1I=1
means parent, I=2 means parent of parent ) THEN
the static link of the callee is set to the address of the
frame determined by following the static link of the caller
(I-1) times

END IF;

The computation of the static and dynamic links is done each time that
a frame is created. The return to the caller is done by following the
dynamic link. Access to variables is done in terms of the static
links. In an activation of a procedure the addresses of the variables
mentioned in the procedure are known at compile time as a pair

where J identifies the frame where the variable 1is allocated and d
gives the position (displacement) of the variable within the frame.
For example in the program seen above, the only activation of the
procedure B knows its variables N and M as having ) equal to O (the
displacement will depend on the sizes of the objects and it 1s not
relevant to us). These same variables are known in all activations of
P as having § equal to 1, and in all activations of C as having
equal to 2. Notice that the first activation of C ‘sees’ the first
activation of P; and that the second activation of ¢ ‘sees’ the
second activation of P but not the first activation of P.

As we are dealing with a block structured language. the various frames
can be allocated on a stack, with consequent simplification of the
policy needed to reclaim the storage associated to these frames. The
fact that the NEBULA Architecture supports Context stacks and the
automatic saving of registers and parameters does not substantially
affect the arguments presented above, It juct reduces the amount of
information that needs to be kept on the data stack. For the example
seen in Figure 2.2 the situation becomes the one shown in Figure 2.2
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In Ada storage management is complicated by the presence of dynamic
types, that is of types whose objects may remain in existence after
the frame where they were allocated has been exited, and by the
existence of concurrent tasks

For dynamic objects we don’t actuvally have to give up the stack
discipline. When a dynamic type is declared, a pool of storage 1is
allocated on the stack. When an object accessed by the dynamic type
is allocated, space is found for it in the pool of that type. For
example, if we have the declarations:

type NODE;
type LINK is access NODE;
type NODE is record
LEFT, RIGHT: LINK;
ValL: INTEGER:
end record;

at the time that these declarations are processed it 1is allocated a
pool for say n nodes (11, Later on, when objects of tuype NODE are
allocated with the new operator., they are allocated in that pool. even
if the allocation takes place in a frame which is a descendent of the
current frame.

The problems posed to the stu.age management system by the existence
of concurrent programs are mOoTe Sserious. These problems are of two

kinds: *

1. As concurrent tasks execute in interleaved fashion, each allocates
‘ and deallocates frames as it wants, without concern for the state
. of the other. Hence cancurrent tasks cannot share the same stack,
. : each must have its own stack. (In the case of NEBULA, of course,
! two stacks are needed by each task. One is the Context stack and
the other 1is the Data stack). The storage management problem is
then how to allocate storage for stacks, given that stacks grow
and shrink in a fairly impredictable fashion. Hence, either each
stack must receive a ‘maximum’ size, or a stack must be able to
grow if need be.

2. When a task is declared within another task (the former is said to
depend on the latter and the latter is called the master of the
former all the objects that are visible in the master at this i
point are also visible in the dependent task.

Dismissing the first problem Ly assuming that we «con allocate stack
segments and possibly expand them without performance penalty, we can
provide the needed visibility across tasks as shown 1in Figure 224
There are two fields in each frame where 5 task is declared, one to
head the list of tasks being declared (they are siblings), the other
to keep count of the elements in this list. Then at the base of the
stack of a task is a pointer back to the frame uwhere it was declared
in its master, and a pointer field for linking this task to its
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siblings. At compile time each variable is uniquely identified by a
triple

<m, J? da>

where ) and d have the same meaning as in block structures languages.
m indicates how many master links must be followed starting from the
current stack before reaching the correct stack (if m is equal to O,
then the variable 1is in the current stack). Of course, at run time
the access to the variable denoted by <m, J, d> will be achieved by
carrying out the actions implied by ¢this ¢triple. First, select
correct stack using m, then select correct frame using j, and finally
choose correct byte using d.

Note that as long as a dependent task is in existence, its master tack

ctannot pop the frame where the dependent task was declared. Otherwice
the dependent task would loose its ability to access the variables
that are visible to it. This is the reason why in Ada no {frame can be

exited until all its dependent tasks are terminated. A program unit
that is done but cannot exit because of the existence of some
dependent task, is said to be Completed

Of course, alternative strategies for supporting visibility across the :
Master Task/Dependent Task chasm could be followed. For example, at
the base of the stack of the dependent task could have been placed a
table with one entry for each task on which this task is dependent
(directly or indirectly). This entry identifies the frame of the task
where the declaration forcing dependence was made. Then again objects
can be represented by triples <m, j, d>. J and d have the same
meaning as before. m instead identifies the entry of the base table
that must be used.

At this point we have reached an understanding of hew storage can be
managed and objects accessed in Ada. We have seen that each task has
its own stack {(two stacks in NEBULA), that block-structured visibility
across tasks could be supported, that the existence of dependent tasks
can force the suspension of a task, that dynamic data types need not
complicate the storage management of the individual task. We have
left unresolved the question of where stacks are actually allocated,
and the whole question of what can be done with data objects visible
across tasks.
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£1) The value of n is chosen by default by the compiler. However i
the programmer could override this default. '
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2.2 SHARING DATA ACROSS TASKS

We have seen that when a task 1is declared within another task
variables de~ <c¢lared in the latter are visible to the former. For
example, if we have the following situation:

————— .

T:
A F; t :
, I ¥ 5 ) : :
' ' ! : i
! ! P {
! e ! :
HERVE '
‘ H ' H :
’ : bW ! :
4 Ve o o o e e e e e i e : :
) where U and V are tasks declared within task T and W 1is a task
declared within V. Then the variable A of type F declared in T is

visible to the tasks T, U, V, W.

We are all familiar with the problems that may arise when data is
shared among concurrent tasks. What Ada does to deal with these
o problems is complex.

i Given a task a synchronisation point for this task is when it is
, , activated, or activates another task, or when it executes an Accept
| : statement, or a Selective Wait statement. or some form of Entry Call,
? or a Delay statement, or an Abort statement, or when the task
terminates. That is, & sunchronization point of a task 1is any time
when the task invokes some extratask concurrency servicelil. Ada
requires that if a tesk reads (writes) a scalar or access variable
that 1is shared, then in the time interval between the synchronisation
points that enclose this access no other task 1is writing (read or
writing) that wvariable. Praograms where this condition 1is not
satisfied are erroneous, i.e. with impre-— doctable behavior. This
requlation makes it possible for tasks to keep local copies of shared
scalar and access variables as long as the original 1is wupdated (if
necessary) at the end of a synchronisation interval where a local copy
has been written. and a local copy is updated at the beginning of each
synchronisation interval in which it is read before being written.

" — A " T T . g s B 2o s S o s g P Sk e Gt i U S i Ol P Ut s s ol S Tt VP il S . D, S S o 0 g St s TR e D e (e S M ey e Sy A P WA o, S e S

€11 I exclude Exception Handling from the Synchronisation situations
because exception handling is a sequential programming concept.
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Ada does not say anything about shared objects that are not of scalar
or access type. Even though Ada does not allow local copies of
objects that are shared if not of scalar or access types, we will
proceed as 1if what applied to scalar and access objects applied also
to all other objects. This means that for any object A of type F:

1. The read operation on A by any task is a logically indivisible
operation

n

The write operation on A by any task is a logically indivisible !
operation

l This can be achieved by using a hardware machine architecture where
| these operations are implemented by uninterruptible instructions, or
by assuming that in Synchronigation intervals the reader and writers
protocol discussed above will hold

' Going back to our example with the tasks T, U, V, W sharing the object
A, we require that any access to A must be completed before any other
access to it can be started. In the case that A is of some ‘simple’
type. the physical operations of access to A are by their nature
atomic. For other types. however, an access to A may be done by an
uninterruptible operation, in which case serialisation of accesses
must be achieved with synchronisation operations. A

2.3 MORE ON CONCURRENCY: NORMAL AND ABNORMAL TASK TERMINATION

The Abort statement has form:

abort task_name_1,..., task_name_ni
For each of the named tasks, if the task is not already terminated,
abort will:

1. Mark the task as ABNORMAL.;

2. Mark all descendants of the given task, both direct and indirect,
as ABNORMAL;

3. For all the tasks mentioned in 1. or 2., if they are suspended in |
some queue (i.e. they are delayed, or waiting to start a
rendez-vous) mark them COMPLETED and remove them from the queuve
they are waiting in;

i
4. Mark as TERMINATED all tasks mentioned in 1. or &  that are not {
yet activated; ‘

S. For all tasks mentioned in 1. or 2. but not in 3. or 4., they
must be marked completed at least by the time that theu reach a
synchronisation point;

6. For each of the tasks mentioned above which are not terminated, if
all their dependent tasks are terminated, mark them as terminated.

Clearly the Abort statement has a4 radical effect on the tasks it




Page
aborts. If task T has Jjust been aborted, by the time it reaches a
synchronisation point it is, if without dependents, terminated

Notice however that if T 1is in an infinite loop (something like
<CINFINITE>>: goto INFINITE; ), there is no guarantee that T will be
terminated (though it will in any sensible implementation). Any
attempt to call an entry of a completed or terminated task raises the
TASKINGERROR exception in the caller.

Each task T has two attributes: TERMINATED and CALLABLE.

T'TERMINATED iff T is terminated
T/CALLABLE iff T is not completed, not terminated, and not
abnormal.

We can now go back to examine the meaning of the TERMINATE alternative
in Selective Wait statements. Assume that a task is waiting in a
Selective Wait statement with an open terminate alternative. Then 1if
this task has a master which is complete and whose dependent tasks are
all either terminated or waiting in a Selective Wait statement with an
cpen Terminate alternative. then that master task and all its
dependent tasks are terminated. Note that in this definition it is
not possible for the <chosen master to have dependents that are
completed but not terminated. Equally impossible is to have, at the
time that the master task and its dependents are terminated, any entry
call pending on any of their entries.

17
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i
3.0 AN OVERVIEW OF NEBULA |
I
3.1 THE ADDRESS SPACES OF NEBULA
NEBULA is a virtual memory machine. Its virtual to physical address f
translation may or not be enabled, under program control. When the

translstion is disabled, it is still possible to take advantage of the
protection features that the Memory Management Unit provides, and to
protect differently different areas of physical memory

3.1.1 THE PHYSICAL ADDRESS SPACE - !

The NEBULA Architecture supports a 32-bit physical address.
Particular implementations may wuse smaller physical addresses which
will behave as zero extended to 32 bits. (That 1is» 1if the actual
physical address 1s 2&6-bit long, it is treated as if extended with
26 27 28 29 30 31 |3
B it S SRR |
{0 10 !0 {0 10 ! l
s sty S SRR R )

The first 2##20 bytes of physical memory form what is called the I1/0

SPACE, that is, they are used to address control registers of the 1/0 1
controllers and of the processor itself. The top (largest addresses) E
2Kk bytes of <the I/0 space are reserved for processor control
Tegisters. (Readers familiar with the PDP-11 Architecture can compare
L NEBULA’s 1/0 Space to the PDP-11 1/0 Space which is placed in the top i
8K bytes of physical memory).

: Immediately after the I/0 Space, that is, starting at location
100000Hex., is physical memory. The first . 5K bytes of this physical
memory are taken wup by assigned interrupt and trap vectors, or
reserved for use by particular implementations of the NEBULA
Architecture to carry out Initial Program Loads.

At last, starting at location 100400Hex is the physical memory
available to the programmer. The map of the Physical Address Space is
recapitulated in Figure 3. 1.

3.1.2 THE VIRTUAL ADDRESS SPACE -

A Virtual Address in NEBULA is 32-bit wide. The Virtual Address Space
consists of two regions, each 2##31 byte long, called respectiveluy,
User Region and Supervisor Region.

The Supervisor Region is accessible only when the executing code is in
Supervisory State.

The User Region is accecsible independently of the state of the
executing code. The map of the Virtual Address Space is recapitulated

el Jhig
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in Figure 3.2. A task, depending on its state, can hence access the
whole Address Space, or just the User Region.

NEBULA supports multiple Virtual Address Spaces. Each task has its
own Virtual Address Space (of course, the Address Spaces of distinct
tasks could be identical). The Virtual Address GSpace of distinct
tasks share the same Supervisory Region, but have distinct User
Regions in the sense that each task can have its own mapping from the
User Region of the Virtual Memory to the Physical Memory.

3.1.3 VIRTUAL TO PHYSICAL ADDRESS TRANSLATION -

The translation of virtual addresses in the User Region and in the
! Supervisor Region are done independently of each other. In either
case the same method is used. Hence it will be sufficient for wus to
consider the case of the User Region.

The User Region is divided into Segments. The number of segments in a
User Region is not fixed, so that different User Regions can have
different numbers of segments. In each implementation of NEBULA at

least 16 segments will be supported

The size of a segment is not predetermined, in the sense that segments
of different sizes can be defined and a segment could be made as large
as allowed bty the underlying Physical Memory.

The translation from the User Region to the Physical HMemory is
controlled by & Segment Map accessed from a special register, called
the User Memory Map Pointer (UMMPP) Register. The Segment Map is
preceded by a8 32-bit word specifying the number of entries in this
map.

Each entry in the Segment Map consists of two 32-bit words. The first
word has farm:

i o 1 29 30 31
ot e ||| e R e s
H { {—---Virtuval Address Bound —-—-—=-—-—— > H
Frmb e —————— || e e e e tem—bm e ——t
”~

' (]
~-0 in User Map, 1 in Supervisor Map !
Protection Key————-—-

and the sevcond has form:
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Successive entries in the Map must have increasing virtual address
bounds.

Given a Virtual Address in the User Region, to it 1is associated at
most one entry in the User Region Map. This entry, if it exists, it
is the first one whose Virtual Address Bound is not less than bits 1
28 of the given virtual address. All entries of a Map must be aligned
on double word boundaries

The vealues of the Protection key have the following interpretation:

000 No access 1s allowed. This mode will be usually used
for swapped out segments
001 Data Read Only
100 Execute only. This mode allows the reading of literals
101 Execute or Data Read
010 Data Read or Data Write
110 Reserved
011 Context only. It is the mode of Context Stacks (see 3. 3)
111 Reserved.

The User Memory Map Pointer has form:

o 29 30 31
b ——— e e e ==t
! Physical Address of first Entry of Map | ! :
o ————— | e m—tm =t
Reserved—-— : 1

Virtual Memory Mode-—--—

The Virtual Memory Mode has the following interpretation. I it  has
valve:

00 It is as if the machine had no virtual memory., or if you
prefer, the map is the identity map,

11 The entry corresponding to a given virtual address is
determined. The the first 29 bits of the physical address
are obtained by adding (overflow, if any, is discarded) the
first 29 bits of both the virtual address and the relocation
amount of the entry. The last 3 bits of the physical address 4
are the same as the last 3 bits of the virtuval address.

The legality of the access is checked using the Protection
Key.

01 The entry coresponding to a given virtual address is
determined. The corresponding phycical address is the same
as the given virtual address. The leqality of the access is ‘
checked using the protection key of the entry. ‘

10 Reserved

e
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3. 1.4 MEMORY MANAGEMENY TRAPS -

A number of traps are associated to errors that can occur during
accesses to memory.

If the physical address used is not implemented, a trap (vector at
100014Hex)is invoked with as only parameter the guilty address.

b The remaining traps are Memory Management Traps, i e. they are
associated with errors that can arise in the virtual to physical
address translation. All Memory Management Traps share the same

vector (at 1000000Hex) and have 4 parameters:

21 The address that gave origin to the fault

72 The address of the operator of the instruction that was
executing at the time of the fault

?3 The segment number, if any, associated to the address
(7?1 above) causing the fault

?4 The fault code. It is a byte with values:
1 Illegal reference to Supervisor Region
2 ' No segment was found for this address
1 3 Protection violation |
4 Privilege Violatioun
.
) As the reader can see, the information provided by these faults 1is
r ‘ ' bountiful and shovld allow for graceful recovery from Memory

Management Traps

3.1.5 HARDWARE SUPPORT FOR REPLACEMENT POLICY -

The NEBULA Architecture has no hardware to support the implementation
of any policy for choosing the segments to be removed from main memory
when main memory is full and a segment fault has taken place. In
particular, contrary to most other machines, no Use Bit (set each time
a segment is accessed), or Dirty Bit (set each time a value contained
in a segment is modified) is associated by the Architecture to each
segment. Of course, particular implementations of the Architecture
are free {(and likely to) add svuch bits.

3.1.6 SETTING AND MODIFYING VIRTUAL ADDRESS SPACES -

We have seen that the Adress Space currently in use 1% characterised ;
by the data structures shown in Figure 3 3.

The User Map and Supervisor HMap are crected as any other data
structure. When they are fully set up, they are activated by loading
the corresponding Map Pointer Register with thece addressges

The Supervisor Memory Map Pointer i3 1likely to remain unchanged
throughout an wup~time session of the machine. This is so since the
Supervisor Region is shared by all Address Spaces. The 1initial
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loading of the Supervisor Memory Map Register is done by using its
adress in the I1/0 region.

The User tMemory Map Pointer is loaded and saved (together with the
Task Context Pointer that we shall encounter later) using the Load
Task and the Store Task instructions. As tasks take turns in <charing
the processor, changes in the content of the User Memory Map Pointer
are going to be frequent.

3.1.7 SOME SPECIAL MEMORY MANAGEMENT INSTRUCTIONS -

NEBULA has some instructions that are very convenient for manipulating
Virtual Address Spaces

The Repent instruction is available for modifying an entry of the User
Map of the currently executing task, or an entry of the Supervisor
Map. This instruction can be used, for example, in the following two
cases:

In the case of a segment fault, after the needed segment has been
placed in main memory, we can use the Repent instruction to patch
the corresponding Map entry to reflect the new situation.

The Repent instruction can be used to map a segment of the User
Region of the current task into different areas of physical memory
at different times.

The Map instruction, given the physical address of a Map and a Virtual
Address, it interprets the Virtual Address using the Map and returns
the corresponding segment number and physical address

3.2 PROCEDURES IN NEBULA

The notion of ‘Procedure Call’ is ubiquitous in NEDULA. Many control
structures that in other architectures have separate mechanisms are
reinterpreted in NEBULA as procedure calls. In a very real sense one
can say that at all times in NEBULA the executing code has been
invoked with a procedure call.

A procedure in NEBULA 1is not Just a sequence of instructions,
supported by simple instructions for invoking it and returning from
it:

Each activation of a procedure has available up to L reginters
(the program counter is register 0O) that are treated, with the
exception of register 1, as local variables of the activation

That 1is, when we call a procedure the registers of the caller are
saved in the ‘context stack’ together with the Processor Gtatus
Word (PSW), and the called procedure is given essentiallu a new
set of registers. The initial content of these reqgisters (with

e e s v e — wame >
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the exception of registers O and 1) is undefined. Upon return to
the caller, the content of the callee’s registers is lost and the
registers and PSW of the caller are re—established. The nature of
Context Stacks will be dealt with more in detail in section 3 3. i
For now it sufficies to know that the machine maintains at one
time two context stacks, the Kernel Context GStack and +the User

Context Stack. The former is used when the machine is in Kernel
1 mode, the latter when the machine is in User mode. The same
Kernel stack 1is used at all times. Instead at different times

different User Context Stacks can be wused as they are 1in
one—-to-one correspondence with tasks

Parameter passing is implicit to the call mechanism. That is. if
we want to call the procedure P with arguments Al, A2, .. » An
(n<=25%6), the <call 1is effected with the single machine
instruction:

CALL P, Al,A2,....An
Within this activation of P these parameters are accessed with the
names:

71 e C n
These names are local to this activation of P and consequently are
not visible in any procedure called by P. If we want, say 73 to
be visible in a procedure Q called by P, either we must use 73 as

. a parameter in the call +to Q, or we must copy ?3 to some area

accessible from Q.

The code of each procedure includes as a prefix a descriptor.
This descriptor will indicate the maximum number of registers
needed by this procedure, whether the procedure expects a variable
or fixed number of parameters, and, if fixed, how many. It also0
indicates if exceptions raised during an activation of the
procedure should be handled by a system wide exception handler or
instead by a handler provided by the user.

Of course ‘procedure calls’ are used to call procedures. But many
more control mechanisms are interpreted as procedure calls.

Interrupts are interpreted as procedure calls invoked by the hardware

to the appropriate interrupt bhandler. All interrupt handlers are
treated as kernel mode procedures, hence they use the Kernel Context
Stack.
Traps are also interpreted as procedure calls made by the harduware.
They again use the Kernel Context Stack. The Trap procedure call will
have a number of parameters. Their exact number and nature is
dependent on the trap being considered. A number of traps are defined
in the NEBULA Architecture. To each trap is associated a trap vector,
i.e. a location pointing to the handler to be invoked.
Cupervisory Calls, anain, are procedure calls. A OSupervisary C-11
instruction has form:

SVC index,pl, ....,pn

The NEDULA Architecture has two special registers with addresses in
the 1/0 space that are used in the interpretation of this instruction.
These two registers have the form:
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0 15 14 31 |
o ————————————— o ——_——————— +
: low limit H high limit 1
e ———————————— o ———————————— +
} Vector Table Address }
e T Ty —— +

where the second register has a value pointing to a struture, the &VYC
table, of the form shown in Figure 3. 4. When the SVC instruction is
executed, a vector is chosen in the SVC Table. This vector is treated
as the physical address of the procedure to be called. The arguments
pl., ... +pn are given as parameters to this procedure. The SYC call
does not change the current mode and priority. The vector determined
by the call specifies if +the called procedure should or not be
executed in Supervisory State and if with or without privilege

Finally, also the dispatching of a task takes the form of a procedure
call. The caller task becomes suspended. The dispatched task
continues from the conditions it had when last suspended.

Even though, as indicated above, interrupt handlers:. trap handlers,
and tasks are invoked as procedures, usually they do not terminate as
procedures by performing a return instruction. Calls and returns are
not necessarily matched. For example, task A may ‘call’ task B, which
may ‘call’ A, etc. without any intervening return operatiaon.

As a final observation we note that NEBULA supports the notion of
procedure call, not that of function call. Function call instructione
would be desirable for the implementation of languages like C and LIGP
where procedures are treated as special cases of functians

3.3 CONTEXT STACKS

In the PDP-11 a register,R&6, acts as stack pointer. When a procedure
is called the return address (and the PSW) is pushed inta the stack.
Upon return this address (and the PSW) is popped from the stack and
moved to the program counter to continue the execution of the calling
program. This same stack is wuvsed to save registers, to pass
parameters, and to allocate the temporary variables of the calling and
called procedures. )

Some of the activities that on the PDP—-11 are explicitly carried out
by the program, pushing and popping the stack., are instead implicitly
carried out by the hardware using a Context Stack.

In this Context Stack are implicitly saved return addresses, PSWs,
Registers, and are are implicitly allocated the parameters of calls
The allocation and deoallocation of temporary variables is still under

program control and is to be done in a separate Data Stack. For this
Datas Stack we need a stack pointer. This can be done by wusing
Register 1 which, contrary to cther registers is not saved and made

urndefined when a procedure is called




v

Page

The NEBULA Architecture provides two registers, The Kernel Context
Pointer (KCP) and the Task Context Pointer (TCP). The procedure that
is currently executing will use the Context Stack pointed to by one of
these pointers. It will wuse TCP if the current procedure has Task
mode. (The mode of a procedure is specified by its descriptor).

Each Context Stack should be implemented as a segment with appropriste
protection key. The Context Pointer for this Context Stack chould be
initially set to the address of the first byte past (higher than) the
segment.

The KCP Register should be set only once at start-up time. Then the
same Kernel Context Stack will remain in use acrToss all procedure
calls. Instead different tasks have different Task Context Stacks

When a task is initiated it is given a Task Context Stack and the TCF
is appropriately loaded. Then each time a new task is dispatched, the
Context Pointer of the dispatching task is saved and the TCP register
is reset to the value saved for the task being dispatched.

3.4 THE PROCESSOR STATUS WORD

The Processor Status Word (PSW) maintains important information about
the current status of the processor and of the executing code. The
principal information, for the purposes of our discussion, is
maintained in the fields:

Kernel/Task Mode: This bit field, if set, states that
the context Stack currently in use is the
Kernel Context Stack, otherwise it is the
Task Context Stack.

Supervisor/User State: This bit field, if set, states that
the current virtual address space consists
of both the User and Supervisor Region;
otherwise it consists of just the User
Region.

Privilege Condition: This bit field, if set, states that
privileged instructions can be executed and
privileged memory segments accessed;
otherwise they cannot.

These bit fields are independently controllable to give all 8 possible
value patterns. They form what we call the Composite State of the

program. We will, in the next session, examine how these bits can be
modified.

Other significant fieclds in the PCW are:

Last Mode: Dit field that is set to the value of the
previous Kernel/Task mode

Priority: A S-bit Tield that e¢peocifies the current

PRSI Y




priority of the processor.

Base of Context Stack: Bit field that is set if the current
Context Stack contains only the current
procedure activation.

3.5 CONTROLLING THE COMPOSITE STATE OF A PROGCRAM

We have called Composite State of a program the combination of the
values of the Kernel/Task Mode, Supervisor/User State, and FPrivilege
Condition of the PSW. The Composite GState controls the ecssential

features of the machine that are available to a program: the Context
Stack it uses, the Address space accessible to it, and the legality of
using privileged instructions and segments. In the following we

examine how transitions among Composite States can take place.

As there is a Load PSW instruction in NEBULA, 1t is possible to gqo
from any privileged composite state to anmy composite state. However.
the more useful transitions do not require the use of the Load PLW
instruction.

As we have seen, all sorts of control mechanisms are reduced in NEBULA
to procedure calls. However. the way the calls are actually made
affects the way that transitions among Composite States take place.

o The Call instruction does not affect the Composite State
o The CALLU instruction changes only the privilege condition of the
composite state. No matter the current valvue, it sets the

Privilege Condition to no privilege

0 Supervisory Calls, Interrupts and Traps change the composite state
in a way that is essentially independent of the Composite State at

the beginning of the transition. The Supervisor/User state is set
to bit O of the address of the invoked procedure (i.e., procedures
in the User Region <can only access the User Region; and

procedures in the Supervisor Region can access both the User and
Supervisor region).

The Privilege Condition is set to bit 31 of the address of the
invoked procedure (in the case of SVCs, this value is ORed with
the current privilege condition)

The Kernel/Task Mode is set to Kernel in the case of traps and
interruptsi it is left unchanged in the case of GVCs.

Interrupt calls set the priority to the priority of the
interrupting device. SVCs do not change the priorvity

o Task initializations act very much like the Lead TOH instruction
in  that the PSW of the task being initioted iz fully specifind o-
part of the initialization.
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o Task dispatching behaves as a Return instruction. not as Procedure
Call: the conditions existing when the task was suspended are
re—established.

Execution of the Return from Procedure instruction has different
behavior depending on the state of the current activation on the
Context Stack.

I# this activation has its Base marked (it is the initial activation
on this Context Stack), on the basis of the PSW field Previous
Kernel/Task Mode, after elimination of the current context, a new
Context Gtack 1is «chosen (it might be the same if the Previous and
Current Mode are the same) and its top activation is re-instated

Consequently its Composite State is adopted

If this Context does not have its Base marked, it is removed and the
previous one is re—instated. The Kernel/Task Mode is left unchanged.
The Supervisor/User State and the Privilege Condition are reset to the
values they had in the new context.

3.6 TASK ORIENTED INSTRUCTIONS

NEBULA has instructions specially dedicated to task manipulation. But
. . first, what is a task? According to Dennis and Van Horn [DVH] a task
is:
» a locus of contrel within an instruction sequence
That abstract entity which moves through the instructions
of a procedure as the procedure is executed by a
processor. "
A task has an identity and state supported by the operating system
and/or the hardware. This support allows the interleaving of the ‘
execuvtion of multiple tasks on a single hardware supported execution i
sequence.

When we program tasks on NEBULA. to each task we associate a two word i
cantrol block of the form

Value of Task Context !
Pointer Register H

¢ Valvue for User Map :
i Register : |

The address of this block can serve as identifier of the task
associated to that block. Each time the tack is activated the first
wnrd of the control block is leoaded into the Task Context Pointer
Register, and the second word of its control block is loaded into the
Uszer Memory Map Register. Then this tacsk is dispatched vsing the top
context of its Task Context Stack. As part of this single instruction
the context of the task executinn this instruction is scaved in it=
Task Context Stack. A separate instruction is used for saving the
current value of the control block of the dispatching task.

N e e o+ e e - =
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In other words, for a task to give up the processor and dispatch
another task it needs to execute 3 instructions:

1. The Store Task instructiomn, which, given the address of a Control
Block:, stores there the current values of the Task Context Pointer
Register and of the User Region Memory Map Register.

2. The Load Task instruction, which, given the sddress of a «ccntrol
block. obtains from it new values for the Task Context FMointer
Register and for the User Memory Map Register.

3. The Start Task instruction which starts executing the top context

of the Context Stack specified as a parameter of the instruction
(the parameter indicates if to use the Task Context Stack or the
Kernel Context Stack).

A variation of this instruction will precede the above action by
discording on the specified context stack of all contexts up to
and including the first one with its Dace bit set.

In either case a specified exception could be raised in the task
being dispatched.

Another kind of instruction is available for performing the initisl

activation of & task. This is the Initiate Task instruction. This
instruction has two parameters. The first 1is the address of the
procedure which is the code of the task being initiated. The second

provides bits 0:15 of the PSW for that task.
A context with its Base bit set is allocated for the task being
activated on the Context Stack specified by bit O of the PSW. As part

of this instruction the context of the task performing the instruction
is saved.

3.7 THE NEBULA MODEL QOF TASKS AND OF THE TASKING KERNEL

The NEBULA Architecture supports the basic notion of a kernel, i e.
of code that supports user tasks and their interactions. At a first

glance the software architecture supported has the form depicted in
Figure 3. 5.

In this architecture each task has:

1. An address space of the form

P + Controlled by User Memory Map.
i User : 1t is different in different
{ Region : tasks.
e e e +
{ Supervisor | Controlled by Supervicor Memory
i Region ; Map. It is the same for all
Fom e ————— + tosks.
. A Task Context Stack, where the contexts of this tosk are caved.

|
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' ‘ 3. A Data Segment, used for the dynamic data structures used by this
task.

4. A Code Segment, used for the code executed by this task.

: All of these areas can be determined by examining the hardware control
i block of this task.

The Virtual Address Space of distinct +tasks share the Supervicor
Region and have distinct User Regions. However 1t is easy to have two
User Regions sharing the same physical segment(s). It sufficies to
set segments in the memory maps of the two User Regions to point to
the same physical address(es).

No instruction supports directly semaphore operations, or spin—locks, i
or other entities wused in the synchronisation of tasks. However a

; Compare and Swap instruction is available for the implementation of
synchronisation mechanisms.

The thread of control of an executing task can be changed because of
synchronous traps, or of asynchronous interrupts, or of Supervisor
calls.

Supervisor calls do not change the current mode, hence they do not
. change the current Context Stack. They may change the address space to
include the Supervisor Region, and they may change the Privilege
Condition to allow the execution of privileged instrctions.
Supervisor calls do not change the identity of the current task or its Pl
priority, they change what the current task can do, to include actions ‘
that normally are thought of as belonging to the kernel. Though the
identity of a task is not changed by the execution of a Supervisor
Call, some may prefer to think of the changes that take place as the i
; transmogrification of the given task into a more powerful alter—ego,
b : into an ‘uplifted version of the given task. From the point of view
of the task that executes a Supervisor Call, this call 1is
undistinguishable from a regular procedure call in the sense that !
normally after some action is done, control continues with the
instruction following the Supervisor Call.

Traps change the mode of the executing program. The Kernel/User mode
is set to Kernel and on the Kernel stack is created a context with its
Base bit set. Privilege is not changed. Priority 1is set to its

maximum value (1F Hexadecimal).

The State will be User or Supervisor depending on the most significant
bit of the procedure invoked by the trap. Again the identity of the
running task is not changed by a trap.

Interrupts behave just like traps with two differences, the obvious
one of being asynchronous instead of synchronous, and the fact that
the priority of the procedure called by the intervrupt will have ite
priority set to the priority of the interrupting device.

SETRO L

Traps and Interrupts vse the Kernel Context Stack and their actiong
are nested.
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4.0 A CONCURRENCY KERNEL FOR ADA

The first impression wupon reading about Ada tasks and their
interactions it 1is to assume that very complex data structures and
1 control structures are required for their implementation. After a
while one comes to the realisation that things are not as difficult as
they seem at first.

We now introduce some very limited extensions to what is required for

sequential programming in Ada. We show how these extensions can be
used to implement the tasking mechanisms of Ada. Later we will
cansider the implementation of these extensions on the NEDBULA

Architecture.

All that follows is written under the assumption that all the tasks of
a program share the same address space. Whether this address space is

N\ virtual or not is irrelevant to our discussion. This assumption of a
single address space [11 simplifies the problem of addressing shared
variables and of accessing the actual parameters of entru calls.
Under this assumption addresses mean the same in all tasks. Thisc
assumption limits the protection possible among concurrent tasks and
makes relocation of segments in this single address space more
difficult.

4.1 TASK CONTROL BLOCKS

For each task we allocate 3 areas:

. . The Data Area: a static area where are allocated 3ll data
structures that exist throughout the life of

the task:

The Context Area:an area used for the context stack of this task
and

The Stack Area: an area used by the normal stack of this task

ﬁ We do not assume the existence of a separate Code Area for each task.
Instead we assume that a whole Ada program has a single Code Area [2]

When a task T creates a dependent [31 task V. it creates for V a
permanent Hoardware Context Block (HMTCB) [4] which remains in existence
as long as V can be named in some intertask action (3]

In the NEDULA Architecture this control block contains the Memory Map
Pointer and the Context Pointer.

{.] Different Tasks may still have different memory maps with
different protection rights. Further, the supervisor/user
distiction differentiates between the areas accessible at
different times.

(2] We leave unspecifiod the relationship between this notion of
"Ar 2a’ and NELULA’s notion of a "Segment"
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! Additional information about a task appears in four other Task Control
' Blocks:

the Permanent Task Control Block(PTCB). which remains i:. existence
as long as the task is not terminated.

the Static Task Control Block (STCB), whose existence is required
only while the task is activated and not terminated,

the Dynamic Task Control Block (DTCB), of which there may be a
copy in each activation frame of the task, and

The Rendez-vous Task Control Block (RTCB), of which there 1is a
copy for each Rendez-Vous in which the task partecipates as a
| callee.

An example of information maintained in the PTCB is the status of the

N task. Examples of information maintained in the 8TCB are the
‘ indication of un/availability faoar the +task +to accept calls on a
! particular entry and the count of calls pending on an entry. Examples

! of information maintained in the DTCB are means to account for and
access the tasks that are dependent on this activation frame.
Examples of information kept in each RTCB are the priority that the
task had before the rendez-vous, and indications of the entries calls
that can be accepted.

Though the information maintained in the five task control blocks are
different in role and in life expectancy, we will do as if all the
information they contain were actually maintained in a single Task
Control Block (TCB). In Figure 4.1 appears an Ada package that
describes the information maintained in a TCD. This package makes
appeal to the notion of “queue’ which is examined in more detail in
section 4. 2.

[3] If within block B we declare task V, then V depends on D. It in
B we declare the access type P to tasks of task type W, then
whenever a task is created through a sequence of actions like:

X: Pi

X.all := new W; .

the task so allocated is dependent on B.
Then a task V is dependent on a task T if it is dependent on
one of the blocks of the task T. "

{41 We call this Control Block "Hardware" hecause it is directly
supported by the NCBULA hardware in the LDAD TAGR and STORE TAGK
instructions.

(51 This may be well after V han terminated execution, c<ince YV can
be named as long as the block on which it 1= dependent iz net
exited.




with QUEUE; use QUEUE:
package TASK_CONTROL_BLOCKS is
type AREA_DESCRIPTOR is

~— undefined; it is the type of the
-— descriptor of the Context Area,
—— Area and Stack Area.
type AT—-AREA-DESCRIPTOR is access AREA_DESCRIPTOR;
type TASK_STATUS is (CALLABLE, COMPLETED, ABORTED.,
type RESULT _CODE is new NATURAL;

—— It describes what
vous. It can take
-- 0 an exception
rendez-vous
the call was successfully completed
a delay alternative was taken
a call to the ith entry of this
task was accepted and succescfully
- completed. i
constant RESULT_CODE := 0O;
constant RESULT_CODE := 1;

WITH_DELAY: constant RESULT_CODE := 2

CALLED_1i: constant RESULT _CODE := 2+i;

type EXCEPTION _CODE is ~— SYSTEM defined integer type.

This code represents the exception that
took place during a rendez-vous. In the
NEDBULA architecture this quantity is
well defined and retrievable after an
exception with the ECODE instructiaon.

Data

TERMINATED);

happens during a rendez
the following values:
was Taised during

PR -

WITH_EXCEPTION:
SUCCESS:

type TCB:

type AT_TCB is access TCBi;
type TCB is record

MEMORY_MAP_POINTER:

COMTEXT_POINTER:

PERMANENT_PRIORITY,

PREVIQUS_PRIDRITY,

CURRENT_PRIORITY:

SYSTEM. ADDRESS:
YSTEM. ADDRESS;
~— priority permanently associated to task
-~ priority in previous activation Fframe

~~ priority in current activation frame
SYSTEM. PRIORITY:

CONTEXT_AREA_POINTER,
DATA_AREA_POINTER,
STACK_AREA_POINTER:

AT_AREA_DESCRIPTOR;
MAIN_ENTRY:

SYSTEM. ADDRESS;
-~ address of where in code area this task
-— starts execution.

-

STATUS:

WAITING_LIST:

TASK_STATUS := CALLABLE:
L INK;

-— When this task is waiting in a

queue hy

queue 1t :
vusing this

is linked into this
field
(Cont.)

FIGURE 4.1
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DELAY_LIST: LINK;
-— When this task is waiting because of a
-~ DELAY statement. it waits in the timer
-~ queue using this link

SIBLING_LIST: LINK;

-~ All the siblings of this task are linked
-- together using this link.

CHILDREN: ANCHOR;
-~— The anchor of the list of all the
~-— dependent tasks.

WHERE _CALLING: AT_ANCHOR;
—— The address of the anchor of the list
—-— (queve) where this task waits if unable
—— +to complete a call.

NUMBER_OF _CHILDREN: NATURAL = 0
-~ The number of Dependent tasks of this task
NUMBER_OF _CHILDREN_AT_TERMINATE: NATURAL := 0;

-~ The number of dependent tasks of this task
—-— that are waiting at a Selective Wait
—- statement with & Terminate alternative.

RESULT_IS: RESULT_CODE;
—-— It reports what happened in the last
-~ rvendez—-vous of this task. It is vused by
-~ the task when acting as callee.
RESULT_WAS; RESULT_CODE;

—— It has exactly the same meaning as
-— RESULT_1S but now it is interded for
—-— the caller.
EXCEPTION_IS. EXCEPTION_CODE:
—= It indicates to the caller of an entry,
-~ 1if there was an exception, what
-~ exception it was.
TASK_BEING_CALLED: AT_TCB;
ENTRY_BEING_CALLED: NATUNAL;
~- It indicates the entry being called in a
-— Selective Wait.
WITH_TERMINATE_ALTERNATIVE: DOOLEAN : = FALSE;
—-— True iff this task is waiting at a
-— Selective Wait statement with a
-- Terminate alternative
WITH_DELAY_ALTERNATIVE: BOOLEAN : = FALSE;
-— True iff this task is waiting at a
-=— Geolective Wait alternative, or at a
-— Timed Entry Call
CELAY_CGMPLETED: DOOLEAN @ = FaLSE:
—= True iff a Delay was requected, and, 1!
-~ it expires, it can be accepted

FICURE 4.1 (cant.)
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MUTEX: SEMAPHORE;

-— It serializes all interactions with this

-— task.
GATE: array (1 .. NO_OF_ENTRIES) of BOOLEAN

D= (others =2 FALSE);
WLIST: array (1 .. NO_OF_ENTRIES) of ANCHOR;

-—- GATE and WLIST control access to the

~— entries of this task. They have one

—— camponent per entry. The GATE(i) will
—— be true iff a call to the ith entry can
-- be accepted. WLIST(i) is the anchor

—-— of the list where callers to ith entry
—= can wait.

end record;
end TASK_CONTROL_BLOCKS:

FIGURE 4.1
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4.2 SINGLY LINKED QUEUES AND SEMAPHORES
In this Section we implement queves and semaphores using:
The sequential facilities of Ada.

an uninterruptible procedure COMPARE-AND-SWAP that we know to be
supported at the machine level in NEDULA by a single instruction,
and

three procedures, GIVE-UP, CIVE~-UP~WITH-SUBSTITUTE and
: READY-ENGUEUE., defined in the package WKERNEL-INTERFACE and
ﬁ discussed in Section 4. 4.

In Figqure 4.2 appears the definition of a generic function
COMPARE-AND-SWAP that can be realised in NEBULA as a single
uninterruptible machine instruction. In this definition we use a
non—-Ada feature. The generic type ELEM is said to be instantiatable
with any scalar or access type. As this corresponds to none of the
generic formal types of Ada, we have used the notation
(<>

for itL1]. Now that we have the generic function COMPARE-AND-SWAP we
l ‘. are in position to implement singly linked queves as the package
F presented in Figures 4.3 and 4. 4. In this package two ENQUEUE
operations are defined. The only difference between them is that in
one it is returned the indication of whether the queve was or not
empty at the time that the ocperation is called. Similarly, there are
two versions of the DEQUEUE operation. The more complex wversion
determines if the queue was or not empty at the time thot the
operation was called.

The ENQUEUE and DEQUEUE operations are extremely rapid. Implemented
as an inline procedure the ENQUEUE operation almost always can be
completed in 5 machine instructions. DEQUEUE almost always will
require also only 5 machine instructions. [The probability that tuwo

tasks execute ENQGUEUE and DEQUEUE operations on the same queue at the
same time is very lowl

Although these operations on queues are implemented without using any
explicit synchronisation mechanism, they are safe even when invoked by
concurrent tasks. In the cases where the instructions of different
operations become interleaved, the overall effect of the different
operations remains the same as if they had been executed 1in strict
sequence.

In Ada tasks that call concurrently an entry arve scheduled in strict
FIFD fashion. Instead, tasks that are in the ready queue are execuvted
on the basis of their priorities,

— e T — S - S > P4 A Al . B . T o = - o = n e AR e S R A e S S et A S - T e S oy e T e S — o - e

[1] Ada gives a special status to zcolar tupes and to accecs types
in that objects of these types can be efficiently shared
However, this dicstinction is lost when one gete to the generir
formal types.
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The singly linked queues considered above are excellent for supporting
FIFO scheduling. but are not directly usable for scheduling tasks on
the basis of their priorities. For the case of the ready queve a
multi—level priority queue is more appropriate.

The ENQUEUE operation four wmultilevel queves 1is Tapid becavse it
involves an indexing operation on an array of queues followed by a
simple ENQUEUE operation. It requires 7 instructions. The DEQUEUE
operation for multilevel queues is more time consuming because it must
first determine the queue of highest priority that is not empty. We
estimate that this operation on the average is equivalent to 5 simple
DEQUEUE operations, that is, it requires 25 instructions. In the case
cf semaphores. as they are not directly defined by the Ada language.
there are uncertainties as to the way they should be <scheduled, if¥f
with a FIFO discipline, or with @ priority discipline. At first sight
it would seem that semaphores should have priority scheduling. But if
semaphores are used exclusively to implement critical regions that are
very brief, then the FIFQO discipline becomes adequate. Since our use
of semaphores involves critical regions that last at most a few tens
of machine instructions, the FIFQ discipline can be adopted and the
simple implementation shown in Figures 4.5 and 4.6 can be used.

In this implementation of semaphores we have assumed the existence of
the function LINK-TO-TCB which, given the address of the WAITING-LIST
field of a task, determines the address of the TCB of that task. This

function, in any reasonable architecture,is trivial to implement. It
is hence assumed without any further discussion. With the name GELF
we mean a variable of type TO-TCB pointing to the Task Control DBlock
of the task executing the code where SELF appears. We assume that

SELLF is defined in the package KERNEL-INTERFACE. It is assumed to be
read-only.

If we examine the implementation of the P and V operations of
semaphores, we see that the execution of a P operation involves almost
always only & machine instructions, and that the execution of a V
operation involves almost always only 11 machine instructions.
Further, these operations in most cases are executed without using any
privilege or any special priority. (Our only vse of semaphores is to
implement very brief critical regions. Hence the probability of two
tasks accessing the same semaphore at the same time is lowl
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generic j
type ELEM is ({<23)i —-- as discussed in the text, this is not a f
—-—~ legal generic type parameter in Ada. i
function COMPARE_AND_SWAP (THE NEW: in ELEM;
SHARED: in out ELE;
Cory: in out ELEM) is
B: DOOLEAN;
begin
B := (SHARED = COPY);
1if B then
SHARED : = THE_NEW;
else
CoOPY = SHARED:;
end 1f;

Tteturn B;
end COMPARE_AND_SWAP;

FIGURE 4.2

package QUEUE 1is

type LINK;
type LINK is access LINK; =~ This seems legal in Ada
type ANCHOR is

record

FRONT, BACK: LINK := null;
. end record;
- type AT_ANCHOR is access ANCHOR;
procedure ENQUEUE(A: in out LINK; B: in LINK);
procedure ENQUEUE(A: in out LINK; B: in LINK;
NOT_EMPTY: out BODOLEAN);
l procedure DEQUEUE(A: in out LINK; B: out LINK):
procedure DEQUEUE(A: in out LINK;:; B: out LINK;
NOT_EMPTY: out BOOLEAN);

L —

end QUEUE;

FIGURE 4.3




with COMPARE_AND_SWAP;
package body QUEUE is

function CMPS is new COMPARE_AND_SWAP(LINK);
procedure ENQUEUE(A: in out ANCHOR; B: in LINK) is

T: LINK ;= A, FRONT;
L: BOOLEAN;
begin
B.all := null;
loop
L = CMPS(B, A.FRONT, T);

exit when L;
end loop:
T.all = b
end ENQUEVE;
—-— The other version of ENQUEUE is essentially the same: it
~— returns in the third parameter the value of L.

procedure DEQUEUE(A: in out ANCHOR: B: out LINK) is

V: LINK;
L: DOOCLEAN;
begin
B = A. BACK;
while B /= null loop
vV = B.all;
L= CMPS(V, A.BACK, T):

exit when L;
end loop;
end DEQUEUVE;
——= The other version of DEQUEUE is essentially the same: it
-- returns in the third parameter the value of L.
end QUEUE;

FIGURE 4.4

with QUEUE;
package SEMAPHORE_PACK is
type SEMAPHORE is limited private;
procedure P(S: in out SEMAPHORE);
procedure V(S: in out SEMAPHORE);
private
type SIMAPHORE is QUCUE. ANCHOR,
end SEMAPHORE_PACH:

FIGURE 4.5
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with LINK_TO_TCB, KERNEL_INTERFACE;
vse QUEUE, KERNEL_INTERFACE:
package body SEMAPHORE_PACK is
procedure P(S: in out SEMAPHORE) is
NOT_EMPTY: BOOLEAN : = TRUE;
begin
ENQUEUE (S, SELF. WAITING_LIST, NOT_EMPTY):
if NOT_EMPTY then

GIVE_UP;
end if; f
end P;
procedure V(S: in out SEMAPHORE) is
NOT_EMPTY: BOOLEAN = TRUE,
X: AT_TCB;
Y: LINK;
begin
DEQUEVE(S, Y); -~ Dequeue Self
DEQUEUE(S, Y, NOT_EMPTY); —-- Dequeuve a waiting task, if any
o if NOT_EMPTY then
1 X .= LINK_TQ_TCB(Y);
r if X.CURRENT_PRIORITY > SELF. CURRENT_PRIORITY then i
GIVE_UP_WITH_SUBSTITUTE(X); i
else %
READY_ENQUEUE(X); |
. end 1ifi; '
* : end if;

end V;

end SEMAPHORE_PACK;

FIGURE 4. 6
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4.3 SOME BASIC TASK INTERACTIONS

In Figure 4.7 are the specifications of some packages and procedures
that we will wuse in implementing some of the basic rendez-vous
mechanisms of Ada. In addition we will assume available schemas Ffor
generating code in correspondence to the phrases described below.

The phrases
S PREPARE_PARAMETER_LIST
j and

COPY_DACK_PARAMETER_LIST
indicate respectively the actions taking place:
~ when the parameters of an entry_call are readied, and
- when, after the call is completed, the ‘out’ and ’‘in out’
parameters are copied back to the caller.
The PREPARE_PARAMETER_LIST and COPY_BACK_PARAMETER_LIST are performed
by the task acting as caller in the rendez-vous
The phrases
GET_PARMS
and
FUT_PARMS
indicate respectively the actions taking place:
. — when the parameter list prepared by the caller is readied for the
l ) callee, and
- when this list is readied back for the caller.
The GET_PARMS and PUT_PARMS actions are performed by the task acting
as callee in the rendez-vous.

What PREPARE_PARAMETER_LIST. GET_PARMS, PUT_PARMS, and
COPY_BACK_PARAMETER_LIST actually are dependends very much on what
the parameters are as to type, number and mode. Under the assumptions
we have made about address spaces, no significant concurrency issue
is involved in these operations, and we will not dwell further on
them. l

In Figure 4.8 appears the code corresponding to the simple entry
call:

T.el. ... ) |

In Figure 4.9 appears the code corresponding to the Accept statement:

accept e(. .. ) do
~-— a sequence of statements & b
end e; ;

In Figure 4 10 appears the code corresponding to the Conditional
Entry Call Statement:

select

T ol .. );

-~ a sequence of statements ©1
else

-— a sequence of statements 2
end select;
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In Figure 4. 11 appears the code corresponding to the Timed Entry Call

Statement:
select
T.el...);
-— a sequence of statements S1
or
delay D;

1 -— a sequence of statements S2
' end select;

In Figure 4.12 appears the code corresponding to the Selective Wait
Statement without Delay Alternative, or Else Alternative, or
Terminate Alternative:

select
when gl => accept el ..) du
~— a sequence of statements GS1
end el;
—— a sequence of statements S1°
or
ar
when gN =2 accept eN(. ..) do
S _ -- a sequence of statements SN

end eN;
—— a sequence of statements SN’

end select:;

The cases of the Selective Wait Statements with Delauy, or Else, or
Terminate Alternative are not considered as they do not add
substantially to our understanding of the rendez-vous mechanism or of !
its implementation

The code we show for the cases we consider is fairly long but of only

limited complexity. A substantial portion of the apparent complexity
is due to the need to check on possible requests to abort the given
task and to the need to propagate exceptions arising during

rendez~vous in both the caller and the callee.

A Simple Entry Call that is without parameters and that finds the
callee waiting requires: 1

- 13 instructions, and L

- a P operation (at least & instructions)

- a V operation (at least 1! inctructions)
- an ENQUEUE operation (ot least 5 inclructions), and
- a GIVECUPWITHOUDSTITUTE operation.

That is, some 32 instructions plus the time required to carru ovt the
GIVE-UP-WITH-SUBSTITUTE operation. If the callee task is not w~itinnm,
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it will take 34 instructions plus a GIVE-UP operation.

Similarly we can estimate that an Accept Statement that is without
parameters and that finds a caller waiting requires 50 instructions
Otherwise it requires 77 instructions and a GIVE-UP operation. Hence
in the best of circumstances a rTendez-vous requires 84 instructions
plus a GIVE-UP operation. All this code is executed without the need
to turn off interrupts.

As the rteader may have noticed, our implementation of the rendez—vous
mechanism does not strive for efficiency, Just for expository
simplicity. Hence our estimates are upper bounds




task DELAYER is

entry DELAY(T: AT_TCB; D: DURATION);
entry CANCEL(T: AT_TCB):

end DELAYER:

procedure SPREAD_ABORT(T: AT_TCB);

task TERMINATOR is

entry TERMINATE(T: AT_TCB);
—= When task T is terminated all area associated with T are
~— reclaimed by the system. Of course:. TERMINATE will be
—-- also applied to each of the tasks dependent on T.

end TERMINATOR:

package KERNEL_INTERFACE 1is

SELF: constant AT_TCB;

procedure GIVE_UP;

procedure GIVE_UP_WITH_SUBSTITUTE(X: AT_TCB);

procedure READY_ENQUEUE(X: AT_TCD);

———

end KERNEL_INTERFACE:;

FIGURE 4.7
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if SELF. STATUS = ABORTED then
TERMINATE(SELF);

elsif T.STATUS /= CALLABLE then
Taise TASKING_ERROR;

end if;

P(T. MUTEX);

ENQUEUE(T. WLIST(e). FRONT, SELF);
SELF. TASK-BEING _CALLED := T;
SELF. ENTRY_BEING_CALLED = e;

1f not T.GATE(e) then
V(T. MUTEX);
PREPARE_PARAMETER~LIST;
GIVE_UP;

else
T. CATE := {(others = FALSE);
V(T. MUTEX);
PREPARE_PARAMETER_LIST;
GIVE_UP_WITH_SUBSTITUTE(T);

end 1f;

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

end if

if SELF. RESULT_WAS = WITH_EXCEPTION then
raise SELF. EXCEPTION_IS;

end 1if;

COPY_BACK_PARAMETERS;

FIGURE 4.8

Simple Entry Call: T.e(...);
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declare
u: AT _TCB;
WAS_EMPTY: BOOLEAN : = FALSE:
PRIORITY_LIFT: SYSTEM. PRIORITY;
EXCEP_CODE: EXCEPTION_CODE : = EXCEPTION_CUODE 'LAST,
begin
loop
if SELF. STATUS =ADBORTED then TERMINATE(SELF); end 1if;
P(SELF. MUTEX);
DEQUEUE(SELF. WLIST(e). BACK, U, WAS_EMPTY);
exit when not WAS_EMPTY;

SELF. GATE(e) := TRUE;

V(SELF. MUTEX)

GIVE_UP;
end loop; ’
if U WITH_DELAY_ALTERMATIVE then

U. WITH_DELAY_ALTERNATIVE = FALSE; -—— TEST and SET instruction

V(SELF. MUTEX)
DELAYER. CANCEL (U);
else
V(SELF. MUTEX ),
end if;

FIGURE 4. % {(cont.)

Simple Accept Statement: accept e(...) do S end e;
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SELF. PREVIOUS_PRIORITY := SELF. CURRENT_PRIORITY;
PRIORITY_LIFT := U.CURRENT_PRIORITY - SELF. CURRENT_PRICRITY;
begin
if PRIORITY_LIFT > O then
CHANGE _PRIORITY(SELF., PRIORITY_LIFT);

end 1if;
GET_PARMS:
S
PUT_PARMS;
U. RESULT_IS := SUCCESS;
exception
others =3 EXCEP_CODE = LCODE;
U. RESULT_IS = WITH_EXCEPTIONM:
U EXCEPTION_IS = EXCEP_CODE;
end;
SELF. CURRENT_PRIORITY := SELF.PREVIOUS_PRIORITY:

if PRIORITY_LIFT > O then
CHANGE _PRIORITY(SELF, -PRIORITY_LIFT);
GIVE_UP_WITH_SUBSTITUTE(U);

else
READY_ENQUEUE (U);

end 1f;

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

end 1f;

if EXCEP_CODE /= EXCEPTION_CODE ‘LAST then
raise EXCEP_CODE;

end if;

end;

FIGURE 4.9

Simple Accept statement: accept e(...) do S end e;




if SELF. STATUS = ABORTED then
TERMINATE(SELF);

elsif T.STATUS /= CALLABLE then
raise TASKING_ERROR;

end iF;
P(T. MUTEX):
if not T.GATE(e) then
V(T. MUTEX);
i
else
ENQUEUE(T. WLIST(e). FRONT., SELF);
T. GATE : = (others =2 FALSE):
T. ENTRY_BEING_CALLED .= CALLED_ e;
VIT. MUTEX);

SELF. TASK_BEING_CALLED

SELF. ENTRY_BEING_CALLED :

PREPARE _PARAMETER _LIST;

GIVE_UP_MWITH _SUBSTITUTE(T);

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

end if;

if SELF. RESULT_WAS = WITH_EXCEPTION then
Taise SELF. EXCEPTION_IS;

Ti
ei;

non

end 1if;

COPY_BACK_PARAMETERS:

S1;

end if;
FIGURE 4. 10
Conditional Entry Call: select
T.e(...); 81;
else

.
oo

end select:
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if SEL. STATUS = ABORTED then
TERMINATE(SELF);

elsif T. STATUS /= CALLABLE then
raise TASKING_ERROR;

end if;

P(T. MUTEX):

ENQUEUVE(T. WLIST(e). FRONT, SELF):

SELF. TASK_BEING_CALLED = Ti

SELF. ENTRY_BEING_CALLED = CALLED e

if not T. GATE(e) then
SELF. WITH_DELAY_ALTERNATIVE : = TRUE:
DELAYER. DELAY(SELF, D); -— thig action must be rapid
VIT. MUTEX )
GIVE_UP;

else
T. GATE :
T. ENTRY_BEING_CALLED
VIT. MUTEX)
PREPARE_PARAMETER_LIST:;
GIVE_UP_WITH_SUBSTITUTE(T);

end if;

if SELF. STATUS = ABORTED then
TERMINATE(SELF);

end if;

if SELF. DELAY_COMPLETED then
SELF. DELAY_COMPLETED
SELF. WITH_DELAY_ALTERNATIVE
Sai

else
if SELF. RESULT_IS = WITH_EXCERPTION then

raise SELF EXCEPTION_IS;
else
COPY_BACK_PARAMETERS:

S1;

]

(others => FALEE);

CALLED e;

[}

FALSE;
FALSE;

#H

end if;
end if;
FIGURE 4. 11
Timed Entry Call: select
T.e(...): Si;
else

delay(D); 52,
end select;
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declare
U: AT_TCB:
WAS_EMPTY: BOOLEAN = FALSE;
PRIORITY_LIFT: SYSTEM.PRIORITY;
EXCEP_CODE: EXCEPTION_CODE := EXCEPTION_CODE ‘LAST;
THE_ALTERNATIVE: INTEGER range O .. N := 0;
1 PSEUDO_GATE: array(l .. NO_OF_ENTRIES) of BOOLEAN
' L= (others => FALSE);
MAPP ING: array (1 .. N) of INTEGER
L= (el, e2, .. + eN);
MAPPING_1: array (1 .. NO_OF_ENTRIES) of integer
i = —=— values are O or the position where
== talled in the Select Statement
COUNT: INTEGER : = 0i
begin
if SELF. STATUS = ABORTED then
TERMINATE(SELF)
end if;

if g1 then COUNT := COUNT + 1;PSEUDO_GATE(MAPPING(1))
............ -~ similar code for g2, g3, ...,

if gN then COUNT := COUNT + 1;PSEUDO_GATE (MAPPING(N))
if COUNT = Q then

it

TRUE: end if;

TRUE; end 1if;

. Taise PROGRAM_ERROR;
‘ end if;

P(SELF. MUTEX);

for I in 1 .. N loop

if PSEUDO_GATE(MAPPING(I)) then
DEQUEUE(SELF. WLIST(I). BACK, U, WAS_EMPTY);
if not WAS_EMPTY then
THE_ALTERNATIVE : = I;
i exit;
' end if;
- end if;
: end loop;
if THE_ALTERNATIVE = 0O then
SELF. GATE 1= PSEUDO_GATE:;
V(SELF. MUTEX);
CIVE_UP:
if SELF. STATUS = ABORTED then
TERMINATE(SELF);
end if;
P(SELF. MUTEX):
DEQUEUVE (SELF. WLIST(SELF. THE_ENTRY_BEING_CALLED). BACK, U);

THE_ALTERNATIVE : = MAPP ING_1 (SELF. THE_ENTRY_BEING_CALLED):
end if;
if U WITH_DELAY_ALTERNATIVE then

U WITH_DELAY_ALTERNATIVE := FALSE; -— TEST and COET

V(SELF. MUTEX);
DELAYER. CANCEL;
else
V(SELF. MUTEX)
: end if;
" . FIGURE 4. 12 (Cont.)
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SELF. PREVIOUS_PRIORITY := SELF. CURRENT_PRIORITY:
PRIORITY_LIFT D= U. CURRENT_PRIORITY - SELF. CURRENT_PRIORITY;
begin
if PRIORITY_LIFT > O then CHANGE_PRIORITY(SELF, PRIORITY_LIFT); end if;
case THE_ALTERNATIVE is
when 1 => GET_PARMS_1; S1; PUT_PARMS_1;
when N = GET-PARMS_N; SN; PUT_PARMS_N;
end case;
U. RESULT_IS
exception
others =2 EXCEP_CODE
U. RESULT_WAS
U. EXCEPTION_IS

SUCCESS:;

ECODE;
WITH_EXCEPTION;
EXCEP_CODE;

itn

end;
SELF. CURRENT_PRIORITY := SELF.PREVIOUS_PRIORITY;
if PRIORITY_LIFT O then
CHANGE_PRIORITY(SELF, -PRIORITY_LIFT);
GIVE_UP_WITH_SUBSTITUTE(Y);
else
READY_ENQUEUE (U);
end if;
if SLLF. STATUS = ABORTED then
TERMINATE(SELF);
end if;
if EXCEP_CODE /= EXCEPTION_CODE'’LAST then raise EXCEP_CODE; end ifi
case THE_ALTERNATIVE is
when 1 => 81~

[T VPRI

when N = SN’
end case;
end;

FIGURE 4. 12

Selective Wait Statement without ELSE., DELAY. or TERMINATE

select

when gl => accept el( ... ) do S1 end el; S1°
or
AR

when gN =2 accept eN( ... ) do SN end eN; SN’

end select:; i
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4.4 IMPLEMENTING THE ADA KERNEL ON NEBULA

Our discussion of the concurrency kernel of Ada assumes the
availability of a few kernel services. The implementation of these
services on NEBULA is straightforward.as it has features that truly
simplify the solution of concurrent programming problems.

Examples of NEBULA support are:

o The treatment of Supervisor requests and of task dispatching calls
as procedure calls. Consequently it 1is possible to use the
parameter passing mechanism of procedure calls when doing these
operations. This simplifies the communication of information
between a task and the kernel and between any two tasks

o The SVC instruction allows a rapid, safe access to the supervicor

space. The procedure invoked by the SVC may be privileged and so
it can perform privileged instructions to act on tasks or to
change the running task’s priority. This procedure can also

access the control blocks of all tasks if, as logical, they appear
in the supervisor space.

0 The switch from one task to another is extremely Tapid, Just the ;
sequence STORE-TASK., LOAD-TASK, START-TASK (possibly this sequence !
is preceded by an SVC and followed by a RET instruction)

0o It is possible to start a task and to raise an exceptiaon in it
with a single operation.

o It is possible to clear the context stack of a task at the same
time that it invokes another task.

o It is possible for the kermel to check with a single instruction
on the legality of a pointer passed to it.

In general, the procedure mechanism of NEBULA is successful and the
overall structure of the machine simplifies considerably the
implementation of control structures and, in particular, the
manipuvlation of tasks.

The memory management facilities of NEDULA, instead, leave much to be
desired.

In [SDW] are given reasons for NEBULA’s memory management structure

It is explained that the NEBULA architecture will be implemented in
both micros and in mainframes. The smaller machines will not allow,
it is stated, the use of a two-level (segments over pages) virtual to
physical address mapping because of its complexity and cost. A
one—-level map vusing pages is excluded becauce the use of either small
pages or of large pages is unsatisfactory (small pages, because they
Trequire large page tables; large pages, because they 1lead to
inefficient uvtilization of physical memory).

Y Because of these reasons the Authers chose the organisatien that we
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i
have described in Chapter 2. This organisation uses two separate
Segment Maps, one for the User mode and the other for the Supervisor
mode. In a Segment Map a Segment Descriptor does not uniquely define
the size of a segment, nor does indicate exactly the addresses mapped
onto that segment. In order to determine this information it is
necessary to examine the Segment Descriptor that precedes the given
one. For example, if we are given Segment descriptors with bounds bO,

3 bl, b2, - then each segment will hold the following virtual

addresses:

Segment O 0 <= <= b0
Segment 1 bO < <= b1l
Segment 2 bl < <= b2

This means that if we need to increase the size of the Oth Segment by
some amount d then:

o Either we add d to the bound of the Oth segment and leave the
other segment descriptors unchanged, or

o We increase all bounds by d.

In the first case the 1st segment becomes reduced by the same amount d
that the Oth segment was increased by. In the second case all segment
descriptors need to be changed. In either case a non-local effect
takes place 1in correspondence to what should be a local change. OFf
course, as indicated in [INT], we could insert a ‘slack’ segment
‘ descriptor following the descriptor of each segment that we may want
& : to modify in size. For example, if we know that we may want to change

the size of segment O, we may place following it a segment whose
descriptor forbids all accesses and has a bound of b0’ (b0 < bO’).
Then all changes on the size of segment O that do not make it bigger
than b0’ are allowed and are local. Of course this solution 1is not
desirable because it requires extra segment descriptors.

The virtual to physical address translation in NEBULA is not simple
and requires the wuse of associative ¢techniques. This limits the
number of segments possible even in the larger implementations of
NEBULA.

Given these problems, it is hard to prefer the segmentation schema of
NEBULA over more traditional segmentation methods [SITI1.

As we described in Chapter 1, it is necessary to be able to map a
portion of a master task address space into a dependent task address
space. This is required ¢to allow the dependent task to access
directly the objects that are declared in the master and are visible
to the dependent. In addition, when two tasks act as caller and
callee in a rendez-vous. parameters may be sent in either or hoth
directions.

To accomodate these requirements there is no simple mechanism in
“ NEBULA or, for that matter, in any other architecture we know of:
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1. It is possible to use totally distinct address spaces in distinct
tasks. But the the access to shared objects becomes too slow
because each access must be mediated by a supervisory procedure.

M

It i1s possible to set up a farm of controlled gpace sharing
between tasks by copying certain segment descriptors of the
Segment Map of the parent task into the Segment Map of the

dependent task. This requires some set up when the dependent tack
is activated. More seriovs is the fact that it requires a
substantial number of segments. In addition it does not help at

all with the prablem of parameter passing between tasks during
rendez-vous.

3. One can adopt the sglution that we have been wusing in this
Chapter. This solution wuses a single virtual address space for
all the tasks of a program This solution reduces substantially
the protection possible between concurrent tasks. It also
Tequires a substantial number of segments, if we intend to wuse

! efficiently physical memory. Its only advantage is execution
speed.

0f these three approaches, probably the third is the most efficient.
But it wuses the Memory Management of NEBULA in the way that is least
appropriate for it, almost as a paged memory. In any case, the
conclusion that NEBULA'’s Memory Management does not support
conveniently Ada is warranted

Our estimate on the number of instructions that it takes to perform
the kernel operations are:

S5 instructions for GIVE-UP-WITH-SUBSTITUTE

7 instructions for READY-ENGUEVUE, and

30 instructions for GIVE-UP. [We need to perform & READY-DEQUEUE
followed by a GIVE-UP-WITH-SUBSTITUTE]

It follows that in the best of circumstances a simple Entry Call will
require 40instructions and a simple Accept statement will require some
50 instructions. The fastest rendez-vous possible requires 114
instructions., This, as stated earlier, is in the case that no attempt
is made to optimize the code. But it remains to be seen how much
optimization is actually feasible
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5.0 SUMMARY

In this report we have examined how well the NEBULA architecture
supports the <concurrency features of Ada with the uvltimate aim of
determining the svitability of wusing the NEBULA Architecture to
execute real-time Ada programs.

We have reviewed the concurrency aspects of Ada. We have scrutinized
in particular the storage structure of execuvting Ada programs. We
have found that the Ada policy of allowing task declarations within
tasks, and of supporting block-structured visibility rules,
substantially complicates addressing within a program. Storage
management is equally complex because a Cactus Stack structure is
required.

In evaluating the ease of implementing a concurrency kernel for Ada on
a machine, two aspects need to be examined above all:

the facilities provided to support context switches from one task
to another or from one task to the supervisor, and

the structure of the available Virtual Address Spaces.

We have reviewed the NEDULA architecture from these <two points of
view.

NEBULA has a number of novel features intended to simplify procedure
calls and context switches. Context Stacks simplify considerably the
preparation required to perform a procedure call, and procedure calls
are used as the basic control structure. Supervisor calls,
Interrupts, traps are all interpreted as procedure calls. The context
switch from a task to another can be accomplished within a maximum of
S5 instructions. A global Context Stack, the Kernel Context Stack, is
available during interrupt and trap handling. At all other times
system services, jJjust like user code, use Task Context Stacks.

NEBULLA supports a one level segmented WVirtual Address schema. The
size of a segment is variable up to the size of the whole physical
memary. Two Segment Maps are used to translate from virtual to
physical addresses: the User and Supervisor Maps. The User Map is
associated to the individual task, the Supervisor Map is the same for
all tasks. The Supervisor Map is vusable only when in Supervisor mode.

We have then examined the implementation of the concurrent mechanisms
of Ada in terms of its sequential features and of a basic set of

operations, of a concurrency kernel. Queves and semaphores were
easily implemented in terms of these operations and then used in turn
in the implementation of various rendez-vous mechanisms. This study

was done in a fashion independent of the underlying architecture
Only later the use of NEDBULA was considered.

The control structures of NEBULA were found extremely supportive of
the Ada concurrency mechanisms [ NEBULA would be equally supportive of
other concurrent programming languages or, for that matter, of machine
language real-time programming].

Instead no truly satisfactory way was found to wutilize the Virtual
Address spaces of NEDULA to support the controlled memory sharing




policy of Ada.

The execution of a Simple Entry call was found to require 40
instructions when immediately successful. The execution of an Accept
statement, when immediately successful, required 50 instructions. The
minimum cumulative (caller + callee) number of instructions required
by a rendez-vous is 114 instructions. These figures were obtained
without any attempt at optimisation. But it seems unlikely that any
local optimization will substantially improve on this figure

Various features of NEBULA that do not appear in other architectures
were helpful. In the implementation of these basic rendez-vous
mechanisms NEBULA saves some instructions with Ttespect ¢to the VAX
because of its more convenient task oriented instructions.

To know that the simplest rendez-vous mechanism requires 40
instructions is a uvseful piece of information. But of itself does not
help determine the usability of Ada to implement real-time systems on
NEBULA <(or, for that matter, on any other machine). Though the
research being reported did not <consider in sufficient depth this
question, a number of observations follow from our study:

1. Our estimates on the number of instructions required to carry out
rendez-vous mechanisms depend very little on NEDULA. NEBULA is
more helpful in this implementation than other architectures. The

complexity of the general Ada rendez-vous mechanism is at the root
of the problem.

P

One of the aims of Ada was to allow the use of concurrent tasks in
all the situations where it would be conceptuall *dvantageous to
do so. It appears that this will result in a s tial penalty
in the efficiency of the resulting program.

3. If a semaphore is implemented directly in NEBULA assembly
language, the execution of a P operation requires the execution of
6 instructions. If the same semaphore is implemented in Ada, the
execution of a P operation requires the execution of over 100
instructions.
It would appear that:

either compilers must be developed that are capable of pretty
fancy optimizations, or

in applications where the real time constraints are
particularly stringent the careful use of packages written in
low level language will still be required.
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